

Fabrication and Characterization of synthetic diamond radiation detectors

Sarthak Mohapatra*,1 P.K.Sahu1 and N.N. Murty2 * sm43@iitbbs.ac.in

- 1. School of Electrical Sciences, IIT Bhubaneswar
- 2. Department of Electrical Engineering, IIT Tirupati

INTRODUCTION

- * Wide bandgap, high carrier mobility and high displacement energy of diamond make it suitable for harsh environment applications.
- Recently lab grown synthetic single-crystal diamond based photodetectors are favourable for Ultra-Violet(U-V) and radiation detection studies.
- * Defects in the diamond bulk affect the spectroscopic performance of the devices and hence needs to be identified in the diamond bulk for possible passivation.

Objectives

- Optical studies on the diamond plates.
- Fabrication of Diamond electronic devices.
- Electrical Characterizations.
- Defect Characterizations.
- Numerical Modelling of diamond bulk.
- Packaging of diamond detectors.
- High energy radiation detection studies.

Experimental setup and procedure

Micro-Fabrication Lab IIT Bhubaneswar

Electrical and Defect Characterizations

- and Lifetime Photoluminescence studies of optically active defects in diamond using Horiba Jobin Yvon-Fluro Cube TRPL system.
- Alpha Spectroscopy at Institute for plasma research.

Major Challenges

- ☐ Defect Identification in the diamond bulk.
- ☐ Correlation of the defects with the spectral characteristics.

Fabrication and Packaging of Diamond bulk devices

 $[N_S]$ < 200ppm

 $[N_s]$ < 1 ppm

 $[N_s]$ < 5 ppb

Cleaning

•The diamond plates are cleaned in a saturated solution of CrO_3 in H_2SO_4 .

Plasma Treatment

• The diamond surfaces are treated with oxygen plasma.

Metal Deposition

Cr/Au (50nm/200nm) deposition.

Post-Metallisation Annealing

•In Argon environment at 350° C.

Figure 1: Fabricated diamond devices

Packaging of diamond detectors

- •The diamond plates are packaged onto TO8 headers.
- For alpha spectroscopy measurements.

Figure 2: Packaged diamond detectors.

Results and discussions

Figure 3: Raman Spectrum of the diamond

Figure 5: PL Spectra of the diamond plates.

Figure 7: UV-Response of the

diamond detectors.

Figure 5: TRPL studies in the

diamond plates.

Figure 8: Defect studies in the diamond detectors.

Results and discussions(Contd.)

- Lower leakage current in diamond Pico electronic devices Amperefavorable for alpha spectroscopy.
- Presence of optically and electrically active defects in the diamond bulk (PL, TRPL and TSC studies).
- Presence of defects are detrimental to the device response in the presence of excess carriers(UV response studies).
- Constant capacitance values indicate the ohmic nature of the contacts.
- Spectral characteristics need investigated.

Conclusions

- Lower leakage current (~ pA) favorable for radiation detection studies.
- Higher order of magnitude of UV response current in the EL diamond detector owing to the presence of less defects.

Acknowledments

sincerely acknowledge CeNSE, IISc Bengaluru for the fabrication and packaging.

Major References

- . R Sussman, CVD Diamond for Electronic Devices and Sensors, Wiley Series in Materials for Electronics and Optoelectronics Application 2008.
- 2.Zhangcheng Liu et al., Responsivity improvement of Tidiamond-Ti structured UV photodetector through photocurrent gain, Optics Express.26 (2018) 17092.
- 3.H. Pernegger et al., Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique, J. Appl. Phys. 97 (2005) 73704.

